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ABSTRACT

Low-Rank Adaptation (LoRA) has become a standard technique for parameter-
efficient fine-tuning of large language models, enabling large libraries of LoRAs,
each for a specific task or domain. Efficiently selecting the correct LoORA adapter
for a given input remains a challenge, particularly in secure environments where
supervised training of routers may raise privacy concerns. Motivated by previous
approaches, we formalize the goal of unsupervised LoRA routing in terms of
activation norm maximization, providing a theoretical framework for analysis. We
demonstrate the discriminative power of activation norms and introduce SEQR, an
unsupervised LoRA routing algorithm designed to maximize efficiency while pro-
viding strict routing guarantees. SEQR provably identifies the norm-maximizing
adapter with significantly greater efficiency, making it a highly scalable and ef-
fective solution for dynamic LoRA composition. We validate our results through
experiments that demonstrate improved multi-task performance and efficiency.

1 INTRODUCTION

Language model users can benefit from fine-tuning existing models on custom data, but may be
constrained by security policies surrounding data access control or retention (Fleshman et al., 2024;
Shi et al., 2025). Low-Rank Adaptation (LoRA) (Hu et al., 2022) is a popular parameter-efficient
technique for fine-tuning these models. Widely-used software packages, such as peft (Mangrulkar
et al., 2022), and model repositories, such as huggingface (Wolf et al., 2020), have contributed to the
proliferation of LoRA-based experts fine-tuned for various tasks or data domains (Briiel-Gabrielsson
et al., 2024; Huang et al., 2024). The broad deployment of language models has led to techniques for
securing and controlling training data (Fleshman et al., 2024; Chowdhury et al., 2025; Shi et al., 2025).
For example, ADAPTERSWAP leverages LoRA adapters to segment data into separate parameter
groups, enabling user-based access control at the model level (Fleshman et al., 2024). The authorized
LoRAs for a particular user can then be applied to the model at inference time, and adapters can be
quickly retrained if training data is later removed to meet retention polices (Fleshman et al., 2024).

Naively applying all authorized LoRAs to a model can lead to parameter interference, significantly
reducing the model performance (Wortsman et al., 2022; Chronopoulou et al., 2023; Ilharco et al.,
2023; Fleshman et al., 2024). Numerous model merging strategies have been developed to address
this challenge (Ortiz-Jimenez et al., 2023; Yadav et al., 2023; Tang et al., 2024; Yu et al., 2024; Stoica
et al., 2025). Alternatively, LoRAs for the same model can be treated as a mixture-of-experts (Jacobs
etal., 1991; Fedus et al., 2022) by learning to route inputs to a smaller set of appropriate adapters
(Pfeiffer et al., 2021; Wang et al., 2022; Caccia et al., 2023; Ponti et al., 2023; Fleshman et al., 2024;
Huang et al., 2024; Zadouri et al., 2024). Multi-LoRA frameworks have also been used for federated
learning, where LoRA training dynamics suggest that the LORA A matrices learn global features
which can be shared among the different adapters (Sun et al., 2024b; Guo et al., 2025).

Supervised training of a router using data across protected silos is not an option in strict data security
scenarios, as adversarial techniques exist for leaking information related to the data (Shokri et al.,
2017; Carlini et al., 2022; Yao, 2024; Zhou et al., 2025). Recent approaches perform LoRA routing
in an unsupervised manner by selecting adapters for a given input without any router training or
cross-silo data requirements (Ostapenko et al., 2024; Fleshman & Van Durme, 2025a;b). In this work,
we formalize the goal of these techniques and analyze their routing procedures. We introduce a new
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Figure 1: Secure and Efficient QR (SEQR) routing: Rank-r LoRAs are trained on multiple datasets
using a shared A matrix frozen at initialization. Each B; is stored in terms of its QR decomposition.
During inference, input vectors are routed efficiently using the smaller » x r matrices.

method, SEQR (Figure 1), which is more efficient than previous approaches while providing strict
routing guarantees. Specifically we:

» Formalize unsupervised LoRA routing as activation norm-maximization;
 Provide theoretical results for current approaches under this framework;

* Introduce a more efficient routing scheme, SEQR, which provably selects the norm-
maximizing adapter; and

 Perform empirical experiments demonstrating the benefits of our approach.

2 BACKGROUND AND RELATED WORK

2.1 LoRA

LoRA updates the pretrained layer weights W, € R™*" by freezing the existing weights and
injecting two low-rank matrices of learnable parameters A € R"*™ and B € R™*" such that the
new weights are W = Wy + B A, with a small rank r < min(m, n) that considerably reduces the
number of trainable parameters (Hu et al., 2022). For an input vector x € R", the output y € R™ can
be computed directly with the new weights as y = Wx or separately as y = Wyx + BAx. LoRA
routing is necessary in the case where many LoRAs are trained on different groups of data, resulting
in a set of available LoRAs A = {B1 A1, B A,, ..., By Ay} for each adapted layer of the model.
The goal of unsupervised routing is to choose the LoRA(s) best suited for each vector in a sequence,
without explicitly training the router (Ostapenko et al., 2024; Fleshman & Van Durme, 2025b;a).

2.2 PRIVACY & SECURITY

Organizations may have various security or privacy concerns depending on the data used for training
individual LoRAs. Training with differential privacy (DP) provides probabilistic guarantees that
an adversary can not infer if particular examples were in the training data (Dwork & Roth, 2014;
Abadi et al., 2016). DP can be used to protect user privacy in cases where adversaries may have
access to the LoRA weights (Shi et al., 2025). Stricter security requirements incorporate data access
control, completely preventing user access to LoRA weights trained on data the user is unauthorized
to view (Fleshman et al., 2024). In these cases, training a router to distinguish between LoRAs
would introduce security concerns, as adversaries with access to the router could potentially leak
information from the LoRAs themselves (Shokri et al., 2017; Carlini et al., 2022; Yao, 2024; Zhou
et al., 2025). We focus on the strict security case, where unsupervised routing approaches are needed.

2.3  ACTIVATION NORMS

Unsupervised LoRA routing can be framed as an in-distribution (ID) detection problem, where inputs
are routed to the adapters trained on data similar to the queries. Prior work has shown that the norm



of the activation vector produced by model layers can effectively distinguish between in- and out-of
distribution (OOD) data (Park et al., 2023; Liu et al., 2024; Shin & Chung, 2024; Sun et al., 2024a;
Wan et al., 2024). ID data tends to produce large activation spikes in neural networks, including in
large language models (Sun et al., 2024a). Park et al. (2023) analyze this phenomenon and find that
the activation norm distinguishes OOD and ID similar to a classifier confidence score. These findings
justify trying to route to LoRAs which maximize the norm of adapter activations || BAx]||.

2.4 ARROW ROUTING

Ostapenko et al. (2024) use the singular value decomposition (SVD) to convert each LoRA adapter
B; A; € Ainto a product of three matrices with an equivalent product:

B A; = U;S;VT, (1)

where U; € R™*" is the orthonormal matrix of left singular vectors, S; € R"*" is the diagonal
matrix of singular values, and V; € R™*" is the orthonormal matrix of right singular vectors. ARROW
routing leverages the fact that the right singular vector v; associated with the largest singular value
corresponds to the direction capturing the most variation in the space of input vectors x (Ostapenko
et al., 2024). This arrow vector v; satisfies v; = maxy |x||,=1||BiAixX||2, meaning it maximizes
the norm of the corresponding adapter activations among unit-length input vectors. We use norm-
maximization as the explicit goal in this work, allowing for analysis of these approaches. Ostapenko
et al. (2024) use the set of arrows as prototypes for each of the adapters in A, assigning the most weight
to the adapter corresponding to the arrow satisfying argmax;|v? x|. The use of vector prototypes
makes ARROW routing especially efficient, requiring a simple dot product per adapter: O(Nn) for
N adapters with input dimension n. ARROW routing performs reasonably well, and the authors
empirically show that the ID adapter tends to produce higher ARROW scores (Ostapenko et al., 2024).

2.5 SPECTRAL ROUTING AND LAG

SPECTR builds on ARROW by using all right singular vectors to make routing decisions (Fleshman &
Van Durme, 2025b). Equation 1 is used by SPECTR to convert each adapter into two new matrices:

B; =U; )

Ay =Sv7T, A3)

such that éiAi = B;A; with fli now containing the orthogonal directions of maximum variation
scaled by the singular values. SPECTR generalizes the ARROW scoring method by assigning the
most weight to the adapter satisfying argmax,||A;x||o. Computing the SPECTR routing scores is
less efficient than ARROW: O(Nrn), but SPECTR outperforms ARROW in routing accuracy and
downstream task performance (Fleshman & Van Durme, 2025b).

LoRA-Augmented Generation (LAG) combines the efficiency of ARROW routing with the improved
performance of SPECTR by using a two-stage approach (Fleshman & Van Durme, 2025a). First, LAG
performs top-k filtering using ARROW to reduce the final routing decision to £ < N adapters. LAG
then uses SPECTR to route to the top adapter in the filtered set. Routing complexity is reduced to
O(Nn + krn) while still outperforming ARROW (Fleshman & Van Durme, 2025a).

2.6 SHARED A

While ARROW, SPECTR, and LAG use traditional LoRA fine-tuning, recent work explores a special
case of LORA where the A matrix is frozen at initialization or shared among several LoRAs in a
federated setting, resulting in similar or improved performance with reduced storage costs (Zhang
et al., 2023; Sun et al., 2024b; Zhu et al., 2024; Guo et al., 2025). Zhu et al. (2024) provides a
theoretical analysis showing that the LoRA updates are dominated by the B matrix during fine-tuning,
and that a LoRA with a frozen random A matrix should perform similarly to one that is fully trained.
The asymmetry in training dynamics lends itself to using a global A matrix and unique B matrices in
multi-LoRA scenarios (Sun et al., 2024b; Guo et al., 2025). We explore this direction in our work,
and show that a shared A matrix allows for more efficient unsupervised LoRA routing techniques.



3 THEORETICAL RESULTS AND SEQR

Problem Statement We formalize the goal of unsupervised LoRA routing to provide a framework
for theoretical analysis. Given the success of using activations for ID/OOD detection and the similar
motivation of current unsupervised routing approaches, we propose the following problem:

Problem

LoRA Activation Norm-Maximization. Given a library of LoRA adapters,
A ={B1A;1,BsA,..., ByAx} and an input vector x, efficiently find argmax; || B; A;x||2.

We add “efficiently” to the problem statement as an algorithm that simply computes all activation
norms directly would be O(Nr(m + n)), far worse than current routing approaches. We will
demonstrate the discriminative power of LoRA activation norms in Section 4.3.

3.1 ARROW IS NOT NORM-MAXIMIZING

Our first result shows that ARROW is not guaranteed to find the norm-maximizing adapter.

Theorem 3.1. There exists a set of LoRA adapters {B1 A1, BoAs, ..., By AN} with corresponding
arrow vectors {v1,va, ..., vn } and x € R™ where argmax;|v] x| # argmax; || B; Aix||2.

We provide the proof by construction in Appendix A and confirm with experiments in Section 4.4.
The main observation from the proof is that alignment with the top singular vector is not enough
to guarantee the adapter will have the largest norm, as misalignment can be overcome with larger
singular values. Routing with LAG inherits the lack of guarantee from ARROW, but the top-£ selection
improves the chances of including the norm-maximizing adapter in the set used for SPECTR selection.

3.2 SPECTR 1S NORM-MAXIMIZING

Our next results show that SPECTR scores are equivalent to the activation norms, and therefore
SPECTR is norm-maximizing. The proof for Theorem 3.2 is provided in Appendix B.

Theorem 3.2. Let B € R™*" and A € R"*" be LoRA matrices with A derived from BA using
Equations 1 and 3, then ¥x € R™, || Ax||y = || BAx]|2.

Corollary 3.2.1. Let {B1 A1, BoAs,...,BNAN} be a set of LoRA adapters converted with Equa-
tions 1-3 to the set { By A1, By Ay, ..., By Ay}, then argmax;||A;x||o = argmax; || B; Aix||2.

These results show that SPECTR provides optimal routing under the stated goal. We are interested in
new approaches providing the same guarantee but with improved efficiency.

3.3 SECURE AND EFFICIENT QR (SEQR) ROUTING

Now we explore the special case of our problem statement where all adapters in A share the same
matrix A. This matrix is randomly initialized and kept frozen to ensure the same data security
provided by other unsupervised routing approaches. For an input x, we compute z = Ax as an
intermediate step. Routing is then required for the set of B matrices. Directly computing the norm
for all would require O(Nmr), which is already equivalent to SPECTR for m = n. We can improve
further by doing a one-time preprocessing step similar to the SVD in ARROW and SPECTR. We
precompute the reduced QR decomposition of each B;:

Bi = QiR;, “
where (); € R"™*" is an orthogonal matrix and R; € R"*" is upper triangular. Similar to SPECTR,
we can throw away the original B; and store the adapter in this new form. The vector z is then routed
to the adapter satisfying argmax; || R;z||2.! The routing complexity is only O(Nr?), which is far
better than SPECTR and is even more efficient than ARROW routing in the typical LoRA scenario
where 7 < n. We present the complete SEQR routing process in Algorithm 1. Like SPECTR, we
show SEQR scores are equivalent to the activation norm for each adapter. Therefore, SEQR always
selects the norm-maximizing adapter. The proof for Theorem 3.3 is provided in Appendix C.

'We z-score these raw scores based on our findings in Section 4.3.



Algorithm 1 Secure and Efficient QR (SEQR) Routing

Require: Pretrained weight matrix W € R™*"
Shared adapter matrix A € R"*" > Randomly initialized and frozen during training
LoRA matrices { B; € R™*"} N |

Norm statistics {1, 03} ¥, > Estimated using training data

Preprocessing
for each adapter B; do

Compute reduced QR decomposition: B; = Q; R; > B, can be discarded
end for

Inference (given input x € R™)
Compute shared intermediate representation: z +— Ax
for each adapterv =1,..., N do

Projected activation: h; < R;z

Score: s; < (||h;ll2 — i) /o > Z-scored activation norm
end for
Select top adapter: ¢* <— arg max; s; > Adapter with max activation norm
Compute final output: y <+ Wx + Q;-h;« > Q+hj» = B Ax
return y

Theorem 3.3. Let B € R™*" and A € R™*™ be LoRA matrices such that B = QR from Equation
4, then Vx € R", || RAx||2 = || BAx]|2.

Corollary 3.3.1. Ler {By, Ba,...,Bn} be a set of LoRA adapters with a shared A matrix and
{Q1R1,Q2Rs,...,QNn RN} from Equation 4, then argmax,||R; Ax||2 = argmax;||B; 4;x||2.

3.4 ROUTING COMPLEXITY

We revisit the routing complexities of ARROW routing, SPECTR, LAG, and SEQR using dimensions
reported in the LAG experiments for added context (Fleshman & Van Durme, 2025a). Table 1
includes the FLOPs used for routing by each method in this example, including the naive approach
of computing the norm directly for each adapter. SEQR is two orders of magnitude more efficient
than any other approach. SEQR also decreases storage costs by offsetting the storage of each R; by
sharing A across the library. ARROW can also take advantage of improved storage when using a
shared A matrix, but arrow vectors require more space than the R; matrices when n > 2.

Table 1: Routing complexity and example FLOPs for each method assuming N = 1000 adapters,
n = m = 4096 hidden dimension, k = 20 LAG filtering, and r = 8 rank adapters.

\ Naive | SPECTR | LAG | ARROW | SEQR

FLOPs 66M 33M M 4M 64K
Complexity | O(Nr(m +n)) | O(Nrn) | O(Nn+krn) | O(Nn) | O(Nr?)

4 EXPERIMENTS

We conduct experiments to validate our theoretical results and to test whether SEQR provides similar
or better performance over less efficient alternatives. First, we confirm prior work showing that using
a fixed A matrix in LoRA works as well as learning A individually. We analyze the differences
in activation norms between these two settings and introduce a calibration step to ensure norms
between adapters are on the same scale. We measure the ability of each approach to select the
norm-maximizing adapter and the resulting multi-task performance and efficiency.



Table 2: Accuracy for LoRAs using a unique or fixed A matrix shared across datasets.

| agnews | cola | dbped | hswag | mnli | mrpc | gnli | qqp | rte | sst2 | AVG
90.4 ‘ 78.8 ‘ 98.7 ‘ 83.6 ‘ 86.1 ‘ 84.7 ‘ 84.9 ‘ 86.5 ‘ 88.2 ‘ 92.4 ‘ 87.4

Unique

Shared 90.0 789 | 99.0 81.5 857 | 85.0 | 8.5 | 86.3 | 879 | 92.8 | 873

4.1 MODELS AND DATA

We replicate the experiments of Fleshman & Van Durme (2025b) using the Llama-3.2-3B-Instruct
model (Grattafiori et al., 2024). We train LoRAs for a variety of tasks: agnewsz, cola (Warstadt et al.,
2019), dbpedia (Auer et al., 2007), hellaswag (Zellers et al., 2019), mnli (Williams et al., 2018),
mrpc (Dolan & Brockett, 2005), qnli (Rajpurkar et al., 2016), qqp,’ rte (Wang et al., 2018), and sst2
(Socher et al., 2013). Similar to Ostapenko et al. (2024), we subsample the datasets for computational
feasibility. Using different random seeds, we produce three sets of LoRAs per dataset and category
(shared vs. unique A matrix), each trained on 1000 samples from the corresponding dataset. Learning
rates were optimized per dataset and category but shared across random seeds. All evaluations are
performed using a held-out set of 1000 examples from each dataset. LORA A matrices are initialized
from N(0, 1/r?) and frozen in the shared setting. The B matrices are initialized with Os and trained
in both cases (Hu et al., 2022). The complete adapter training details are included in Appendix D.

4.2 UNIQUE VS. SHARED

Before measuring routing performance, we ensure that using frozen A matrices results in similar
LoRA performance. Table 2 shows the accuracy of each adapter on the corresponding test set,
averaged across the three different initializations. Accuracy is within 1% between the two categories
in most cases, with the largest deviation being a 2% difference on hellaswag when using the frozen A
matrices. Overall, the average performance is nearly identical, a finding consistent with prior work
showing similar performance with a frozen A (Zhang et al., 2023; Sun et al., 2024b; Zhu et al., 2024).

4.3  ACTIVATION NORMS

Activation norms of a given adapter can be informative for distinguishing ID from OOD data.
However, to ensure bias-free routing, these norms must be comparable across adapters. For instance,
the agnews adapter may produce lower norms than the cola adapter regardless of the dataset, even if
it generates higher norms on agnews data specifically. In such cases, the routing procedure would be
biased toward selecting the cola adapter. We explore and mitigate this potential bias in norms.
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Figure 2: Distribution of average activation norms for each dataset when using LoRA adapters with
unique A matrices or a fixed A matrix shared across adapters.

We gather the average activation norms across model layers for each adapter in Figure 2. We find
that the activation norms are very consistent across adapters when using LoRAs trained with unique

http://groups.di.unipi.it/~qulli/AG_corpus_of_news_articles.html
3https ://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs
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Figure 3: Raw (top) versus z-scored (bottom) activation norms for the adapters using unique (left) or
shared (right) A matrices. Rows are datasets and columns are the applied adapter.

A matrices. However, when the adapters share a frozen A matrix across datasets, the variance
in activation norms is considerable. To address the issue, we introduce an offline calibration step
for the norm-based approaches. We compute the mean, y;, and standard deviation, o;, of the
activation norm for each adapter using its associated training data. The scores for SPECTR become
si = (||Ax||2 — ps) /o and similarly for SEQR s; = (|| R;Ax||2 — ;) /0, which are the z-scores
of the original raw scores to ensure all adapters are on the same scale. These normalized scores are
already included in Algorithm 1. ARROW scores remain the same, as v; is unit-length by construction.

We visualize the impact of z-scoring by measur-
ing the average activation norm for each adapter, T T T T T T T T ]
on each dataset, before and after normalizing the
scores (Figure 3). We see that the norms for
adapters with unique A matrices are already dis-
criminative, but normalizing does sharpen the dis-
tribution. The biased norms in the shared case
completely prevent accurate discrimination, with
the dbpedia adapter producing the largest average
norm regardless of the dataset. Z-scoring signifi-
cantly improves the results, leading to similar rel-
ative averages when compared to the traditionally
trained LoRAs with unique A matrices.

Routing Accuracy

4.4 ROUTING ACCURACY . . . .
Figure 4: Routing accuracy as k increases for

LAG. LAG is equivalent to ARROW at k = 1
and to SPECTR at £ = 10. ARROW chooses the
norm-maximizing adapter for 16% of tokens.

We validate our theoretical results by measur-
ing the percentage of tokens routed to the norm-
maximizing adapter (Figure 4). ARROW chooses



Table 3: Mean and standard deviation of performance achieved across datasets and routing methods.
SPECTR achieves identical performance as SEQR but at a higher computational cost.

| Mu | ARROW | LAG | SEQR
agnews | 16 +9.7 89 +09 89+ 1.0 91 + 0.5
cola 86 £ 3.6 92+ 1.6 94 + 0.8 96 + 0.9

dbpedia | 89 +2.6 | 100 £ 0.1 | 100 = 0.2 | 100 £ 0.2
hswag 53+00 | 78+122 | 86+£2.1 8723
mnli 48 £25 | 78 %21 81+62 | 8175
mrpc 76 £45 | 92+12 | 93+15 | 93+22

qnli 79406 | 92+28 | 95409 | 96+ 1.4
qqp 61+44 | 97409 | 97402 | 97+0.1
rte 311 | 94431 | 9615 | 96+2.1
sst2 94403 | 97+1.0| 98+09 | 98+23
AVG | 675 | 909 | 929 | 935

the adapter with the top singular vector most aligned to the input. This adapter is the norm-maximizing
adapter for only 16% of tokens. The routing accuracy of LAG scales almost linearly with k, as LAG
is equivalent to ARROW at k = 1 and equivalent to SPECTR at £k = 10. SPECTR and SEQR both
choose the norm-maximizing adapter in all cases. These results empirically confirm our theoretical
findings and are consistent with prior work showing ARROW routing accuracies just above random
change and improved routing with SPECTR (Fleshman & Van Durme, 2025b).

4.5 TASK PERFORMANCE

We measure multi-task performance by evaluating the routing methods on the withheld data from each
dataset. Keeping with previous work, we include MU-routing as an additional baseline (Ostapenko
et al., 2024; Fleshman & Van Durme, 2025b). MU forgoes routing to individual LoRAs and instead

computes the mean update using all adapters: y = Wx + % Zfil B; Ax. While simple, averaging
adapters can lead to poor performance due to interference in parameter space, especially with a large
number of adapters (Ortiz-Jimenez et al., 2023; Tang et al., 2024; Stoica et al., 2025).

Fleshman & Van Durme (2025a) use k£ = 20 with LAG, filtering their adapter library to 2% of
the total before using SPECTR to make the final selection. With only 10 adapters, we use a 30%
reduction with £ = 3 for demonstration purposes, but note the LAG task performance is equivalent to
ARROW for k = 1 and to SPECTR and SEQR at k£ = 10. We control for variation in task difficulty
by dividing each score by the performance of the correct adapter from Table 2 (Ostapenko et al.,
2024; Fleshman & Van Durme, 2025b). We report the mean performance and standard deviation
over three random seeds in Table 3. SEQR and SPECTR route equivalently, so we only include SEQR
in the table. All other approaches significantly outperform MU routing. SEQR achieves the highest
average score in all cases, outperforming ARROW and LAG.* The similar task-performance with
LAG and identical performance with SPECTR make differences in efficiency a primary consideration
for choosing among the various approaches. Next, we explore these differences in more detail.

4.6 ROUTING EFFICIENCY

SEQR yields the same improved multi-task performance as SPECTR, but with far greater efficiency.
We measure the realized FLOPs and peak GPU memory used by each approach under various
conditions (Figure 5). Total memory usage is dominated by the storage of the adapter library, so
SEQR and ARROW are around twice as efficient when using shared A matrices. SPECTR and LAG
require storing unique A; matrices per adapter, even when the original A matrix is shared. SEQR
stores an extra Nr2 parameters for the R; matrices while ARROW stores an extra Nn for the arrow
vectors. This gives SEQR an additional advantage in storage costs when 72 < n. For computation,
SEQR provides a significant reduction in FLOPs over other methods, especially for large adapter
libraries using a smaller LoRA rank per adapter. ARROW requires fewer FLOPs than SEQR when

*A paired t-test produces p = 0.013 when comparing with ARROW and p = 0.096 with LAG.
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Figure 5: FLOPs (left) and GPU bytes used (right) for each method while varying hidden dimension
(top), number of adapters in library (middle), and LoRA rank (bottom). Settings are fixed to n = 4096,
N = 1,000, and r = 8 when not under evaluation. LAG uses k = 20 for ARROW filtering.

r > /n, but the relative task-performance of ARROW degrades at higher rank, where routing
decisions are still limited by the rank-1 prototypes (Fleshman & Van Durme, 2025b).

5 CONCLUSION

In conclusion, we introduced SEQR, a state-of-the-art unsupervised LoRA routing algorithm. We
formalized the goal of unsupervised LoRA routing in terms of activation norm-maximization and
provided theoretical results for previous routing methods under this framework. The approaches
that guarantee selecting the norm-maximizing adapter had better multi-task performance in our
experiments. We showed that SEQR has this guarantee while being orders of magnitude more efficient
than existing alternatives. SEQR leverages prior work showing that similar performance can be
achieved when using LoRAs with frozen A matrices shared across adapters, a finding we empirically
validate. Sharing the A matrices resulted in a higher variance in activation norms, which we corrected
via an offline calibration step. Calibration improved performance for SPECTR and SEQR, with SEQR
being significantly faster in execution due to the increased efficiency. SEQR maintains the security
benefits of other unsupervised methods, preventing data leakage without access to the LoRA weights.
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A ARROW PROOF

Proof. We will construct 2x2 LoRA adapters C' and D and an input x that satisfy the condition of
the theorem.

1. Define C = B A;:

. 2 0
Let matrix C = (0 1).

The singular values are o1 (C) = 2 and 05(C') = 1. The right singular vector corresponding

to o is vg = <(1))

2. Define D = By As:

We construct D from the singular value decomposition D = USV” and choose the
components to satisfy the theorem.

Let U = I the identity.

Let the singular values be o1(D) = 3 and o

Let the right singular vectors be vp = —=

Loy 0[S 2\ (2 =
D:USVT:(O 1) (0 1) <¢1§ _@) :(VF _ﬁl).
V2 V2 V2 V2
3. Choose vector x:

Letx=vg = ((1)>

4. Verify inequality:

LHS = argmax,|v! x|

= argmaxi{\vg)d, |vgx|}

= argmax; { = (adapter 1).

1
17\—6}

RHS = argmax;,||B; A;x||2

= argmax;{||Cx|[2, || Dx]|2}
3
ol
V2l

e
= argmax; {2, V/5} = (adapter 2).

)
2

2
= argmax,{ 0

LHS +# RHS.
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B SPECTR PROOF

Proof. Let B € R™*", A € R"™*" and x € R". So,
|BAx||> = [|[USV T[] (Equation 1)
= HUAX||2 (Equation 3)

= \/IIUAx][3
= VxTATUTU Ax (Definition of squared 2-norm)
= VxT AT Ax (Orthonormal columns = UTU = I)

=/ I14x|3

= || Ax|l2

C SEQR PROOF

Proof. Let B R™*", A € R"™*", x € R", and B = QR from Equation 4. So,
[|BAx||2 = ||QRAX]|2 (substitution)
=/ |lQRAx|[3
= /xTATRTQTQRAx
= VxTATRT RAx (Orthonormal columns =—> Q7Q = I)

= /||RAx|[3
= [|RAx||

D ADAPTER DETAILS

We fit LoRA adapters targeting all attention layers in the network (query, key, value, and output
projection layers). We choose initial settings for the LoRAs using the uns1oth hyperparameter
guide.’ We use rank-32 adapters with a LORA o = 64 and dropout of 0.05. We train for two epochs
using a cosine schedule with warm-up ratio of 5% and a batch size of 8. We sweep learning rates in
the set {5e-6, le-5, 2e-3, 5e-5, le-4, 2e-4, Se-4, le-3, 2e-3, Se-3} for each dataset, but share learning
rates across random seeds.

Shttps://docs.unsloth.ai/get-started/fine-tuning-1llms-guide/
lora—-hyperparameters—guide
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