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Abstract

We introduce RE-Adapt, an approach to fine-tuning large language models on
new domains without degrading any pre-existing instruction-tuning. We reverse
engineer an adapter which isolates what an instruction-tuned model has learned
beyond its corresponding pretrained base model. Importantly, this requires no
additional data or training. We can then fine-tune the base model on a new domain
and readapt it to instruction following with the reverse engineered adapter. RE-
Adapt and our low-rank variant LoRE-Adapt both outperform other methods of
fine-tuning, across multiple popular LLMs and datasets, even when the models are
used in conjunction with retrieval-augmented generation.

1 Introduction

Large Language Models (LLMs) require a significant investment to develop and train, requiring
resources available to only a limited number of organizations. For instance, Meta’s Llama-3 family
of models was trained using two custom-built compute clusters, each containing 24,000 high-end
GPUs (Metal 2024). Parameter Efficient Fine Tuning (PEFT) enables resource efficient downstream
customization of LLMs for new domains by adjusting a relatively small number of parameters while
keeping the majority unchanged. However, an important distinction exists between the types of
model used for further fine-tuning. It is common for LLM producers to release two versions of a
model, one which is pretrained on a general task such as next-token prediction and an instruct version
which is then continued trained on annotated data to learn how to follow instructions or respond to
queries in a preferential manner (Touvron et al.l 2023} Jiang et al.| [2023} |Almazrouei et al., 2023}
Banks and Warkentin, 2024)). The availability of both versions introduces a choice for organizations
wanting to adapt a model to their custom task or domain. While an instruction-tuned model is
generally more capable for popular tasks, the majority of data available for additional fine-tuning is
unlabeled, lacking the annotations expected from instruct models. This poses a significant problem as
annotation by the downstream organization can be too difficult, expensive, or error-prone (Fredriksson
et al., 2020; Desmond et al.l 2021). Additional fine-tuning can also degrade the performance of
the instruction-tuned model outside of the new fine-tuning distribution (Kotha et al.|[2024)). On the
other hand, pretrained models can be easily fine-tuned with unlabeled text but lack the additional
capabilities of their instruct counterparts.

To address this dilemma, we seek the ability to fine-tune existing LLLMs on unlabeled text while
retaining the capabilities from pre-existing instruction-tuning. We draw inspiration from adapters,
sets of learnable parameters added to an existing model for fine-tuning (Bapna and Firat, [2019;
Houlsby et al.l [2019). We make the key observation that the difference in weights between an
instruction-tuned and corresponding pretrained model is effectively an adapter. Isolating the
information learned from instruction-tuning into this Reverse Engineered (RE)-Adapter enables
fine-tuning of the pretrained model, which can then be readapted with the instruction following

capabilities (Figure I). In this work we:
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Figure 1: In RE-Adapt, an instruction adapter is isolated by differencing weights between instruct

("") and pretrained (¥) versions of a model, which can be reapplied to the pretrained model after
fine-tuning.

» Explore the differences in parameters between pretrained and instruct models and their use
as instruction adapters;

* Quantify RE-Adapt’s effectiveness to leverage unstructured knowledge for question answer-
ing in new domains under both context-free and retrieval-augmented scenarios;

¢ Introduce partial adaptation, a technique for scaling the strength of adapters for fine-grain
control of knowledge priorities; and

* Demonstrate that RE-Adapters are effectively low-rank, showing that low-rank RE-Adapters
(LoRE-Adapters) are capable of similar performance using up to 5x fewer parameters.

2 Background

2.1 Adapters

Adapters (Bapna and Firat, 2019; |[Houlsby et al., 2019) have played an important role in the context
of transfer learning for language models in recent years, particularly for fine-tuning pretrained models
which are too large to fully train on commodity hardware. The concept introduced by [Houlsby et al.
(2019) provides a lightweight alternative to full fine-tuning through the augmentation of models
with small modular sets of trainable parameters. Adapters have been useful for enabling the use of
pretrained models on new tasks (Pfeiffer et al.| 2021} [Karimi Mahabadi et al., 2021} RiickIé et al.,
2021), new domains (Malik et al.| [2023} [Schopf et al., 2023} |Diao et al., [2023)), and adapting to
multiple languages (Chronopoulou et al., 2023b; [Ustiin et al., 2022} [Parovic et al., 2023).

Low-Rank Adapters (LoRA) (Hu et al.| 2022) are a particularly parameter efficient adaptation
technique which adds a low-rank matrix to the weights of existing layers. Because the adapter is
low-rank it can be represented as the product of two much smaller matrices, significantly lowering the
number of trainable parameters. Weight-Decomposed Low-Rank Adaptation (DoRA) is an extension
to LoRA with superior performance and similar efficiency (Liu et al.;[2024). |Liu et al.|(2024) achieve
this by decomposing the pretrained weights into both magnitude and direction components, applying
LoRA for directional fine-tuning only. Important to this work, adapters learned with either LoRA or
DoRA can be represented as a single matrix which captures the information learned during fine-tuning.
The pretrained model is then adapted by simply adding the new matrix to the existing weights. We
leverage DoRA to fine-tune our models on a new domain, and take inspiration from the additive
nature of these techniques to derive our reverse engineered adapters.

Several approaches have been developed which utilize the mixing or combination of adapters to
benefit from diverse tasks or domains [Pfeiffer et al.| (2021)); Rucklé et al.| (2021)); Wang et al.|(2022);
Chronopoulou et al.| (2023a)); Fleshman et al.| (2024)); Zadouri et al.| (2024) or for parameter efficient
federated learning (Babakniya et al.l 2023} [Sun et al) [2024)). One method to categorize these
approaches is by the mechanism used for combining the adapters. Either a weighted combination of
adapters is applied to the base model (Chronopoulou et al.,[2023a} [Fleshman et al.l 2024; Babakniya
et al., 2023} |Sun et al., |2024) or another set of parameters are used to learn adapter interactions



(Pfeiffer et al.| 2021} Riicklé et al.,|2021; Wang et al.| 2022} [Zadouri et al.,[2024)). We focus on the
former, as we reframe instruction-tuned models as the summation of a pretrained model with an
instruction adapter. We add new knowledge by combining domain-specific and instruction adapters
via linear combination. As highlighted by [Sun et al.|(2024), separate adapters can be incompatible
when averaged. |Chronopoulou et al.| (2023a) and [Fleshman et al.| (2024)) try to mitigate this by
initializing adapters with the same random weights, and |Sun et al.[(2024) by doing the same through
a data driven approach. Neither option is applicable here, as we have no control over the instruction
adapter. This motivates our new approach for partial adaptation which we introduce in[Section 3|

2.2 Instruct Models

Some of the most capable LLMs are instruct variants, pretrained on massive amounts of unannotated
text and further trained on curated datasets with a combination of instruction-tuning (Mishra et al.,
2022} |Wei et al., [2022; |Ouyang et al.l 2022 Sanh et al., [2022) and Reinforcement Learning from
Human Feedback (RLHF) (Christiano et al. [2017; |Stiennon et al., 2020). For example, Llama-3
was pretrained on 15T tokens and the instruct version continued training with a combination of
supervised fine tuning (SFT), rejection sampling, proximal policy optimization (PPO), and direct
preference optimization (DPO) (Meta, |2024). Open-source LLM producers generally release both the
instruct versions as well as the pretrained models from which they were derived (Jiang et al.| 2023}
Almazrouei et al., 2023 |Banks and Warkentin} 2024} |Meta, |2024). Access to the pretrained LLM
allows users to customize the model to a new task or domain while taking advantage of the large
investment required for pretraining. Fine-tuning the instruct model directly is generally avoided due to
catastrophic-forgetting, a phenomenon where models lose previous abilities with subsequent rounds
of continued training (McCloskey and Cohenl |1989; |[Kotha et al.| 2024)). This is unfortunate, as few
organizations have the resources to conduct fine-tuning at the scale of the original instruction-tuned
models. In this work, we explore methods of fine-tuning LLMs which take advantage of both the
pretraining and instruction-tuning of existing LLMs. We specifically design our approach to minimize
forgetting while fine-tuning instruction-capable models with unlabeled text.

2.3 Model Arithmetic

Previous works have looked at the ability to arithmetically manipulate models to isolate certain
behaviors (Ilharco et al.| 2023} [Mitchell et al.,2024)). [lharco et al.|(2023) constructed task vectors by
differencing weights between a pretrained model and several corresponding models each fine-tuned
for a particular task. They observed for their models that task vectors are almost orthogonal to
each other, preventing interference and allowing combinations of the vectors for negating certain
behaviors, improving multi-task performance, or performing well on new tasks via more complicated
task analogies (Ilharco et al., [2023). We similarly solve for our reverse engineered adapter with
a simple differencing, but using a single LLM fine-tuned for multi-task instruction-following. By
effectively isolating instruction-tuning into an adapter, we allow further fine-tuning of pretrained
models, maximizing knowledge acquisition before readapting their ability to follow instructions. We
introduce an optional step for reducing the rank of our RE-Adapter, lowering memory requirements
while maintaining or improving performance in some scenarios. Unlike individual task vectors, our
multi-purpose RE-Adapters are not assumed to be orthogonal to new training domains. We introduce
a technique for mitigating potential interference in by controlling the adaptation strength.

Mitchell et al.| (2024} developed an alternative approach for isolating pretraining knowledge from
fine-tuned behaviors which they call emulated fine-tuning. Instead of differencing model weights,
emulated fine-tuning considers the difference in outputs between pretrained and fine-tuned versions
of a model. By combining this difference with the output of a larger pretrained model, Mitchell et al.
(2024)) found that they could benefit from the additional pretraining knowledge while still solving
the task of the smaller model. Their technique could be extended to meet our goal but requires the
storage and forward pass of multiple models for inference. Our approach isolates knowledge and
instruction-following into adapters, merged into a single model at no extra cost.

3 Partial Adaptation

We detail our main methods in but first we introduce a technique for controlling the strength
of adaptation. Consider a model with weights W and an adapter A used to fine-tune the model on a



new domain. Using additive adapters such as LoRA or DoRA, the combined weights:
W=W+A €]

are then used for inference (Hu et al., 2022} [Liu et al., 2024). We make the observation that the
resulting model assigns equal weight to the original parameters and the new adapter, which is
generally trained with significantly less data than the original weights. This potentially leads to
overfitting in the new domain and degradation of performance in the general setting. These issues
compound in situations where multiple adapters are combined. Both (Chronopoulou et al.| (2023a)
and Fleshman et al.| (2024) discuss complications arising from mixing adapters, especially if they
were not initialized with the same values to encourage compatibility.

To mitigate these challenges we propose a technique for partial adaptation which introduces a
post-hoc scaling factor for each fine-tuned adapter. Importantly, [Equation 1|is still used during
fine-tuning, but inference becomes:

W =W +)A )
where 0 < A\ < 1 is used to scale the strength of adaptation. In our experiments, we find that partial
adaptation improves performance when using either single or multiple combined adapters.

4 Reverse Engineered Adaptation

Here we describe Reverse Engineered Adaptation (RE-Adapt), our approach to solve the challenge of
updating an instruction-tuned model with unlabeled text without degrading the ability of the model to
follow instructions. In we demonstrate the effectiveness of this approach for closed-book
and retrieval-augmented question answering.

4.1 RE-Adapters

First consider two language models: T g, which has been pretrained with parameters ®; and T,
having the same architecture as T'¢ but with parameters ® updated from the pretrained parameters
® via instruction-tuning. Given these models, we can solve for the RE-Adapter parameters A using:

A=0-d (€)

to isolate the information learned during instruction-tuning. Next, we augment the pretrained model
T g with a learnable adapter ¥ and fit T4 4w on a new domain by only updating the adapter weights
W. We refer to ¥ as the knowledge adapter. We utilize DoRA to fit ¥ in our experiments, but any
fine-tuning approach is applicable. We construct our final model T with parameters:

Q=2 +a¥ +pA 4)

where o and 3 are the scaling factors for the partial adaptation of ¥ and A respectively. We find that
scaling down the strength of the knowledge adapter ¥ and RE-Adapter A with partial adaptation
leads to better performance in instruction-based tasks related to the new domain while maintaining or
slightly improving on the performance of the original instruction-tuned model out-of-domain.

4.2 LoRE-Adapters

Inspired by LoRA, we explore the intrinsic dimensionality of RE-Adapters and their ability to
be represented by low-rank approximations. The Eckart-Young-Mirsky theorem establishes the
truncated singular value decomposition (SVD) as the best low-rank approximation of matrices under
the Frobenius norm (Eckart and Young] [1936)). We compute the SVD of the RE-Adapter A from
which yields A = USVT with the diagonal of S containing the singular values of A
sorted by magnitude, with U and V the corresponding left and right singular vectors. We then
compute the percentage of variance explained by each dimension by squaring the singular values and
re-normalizing the results to sum to 1. The cumulative explained variance v at rank k is then:

kU‘Q

. &)

vk = Bicog 2
J

where o; is the ¢th singular value. We replicate this analysis for multiple modern LLMs and find that
the majority of total variation in parameters can be represented at low-rank. For example,



displays the cumulative explained variance plots for three layers from the RE-Adapter derived from
Llama-3: we see more than half of the variance in these layers can be captured by a rank 128
approximation. This suggests the potential for a low-rank RE-Adapter (LoRE-Adapter).
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explained variance 7.

We can convert a RE-Adapter into a LoORE-Adapter using a similar approach as[Sharma et al.| (2024)
by representing each layer with its truncated SVD. In our case, we truncate to the rank that captures a
total explained variance above a user-defined threshold . shows the relationship between
7 and the reduction in total parameters when using Llama-3 models to derive the adapter. As 7
increases we maintain a higher percentage of the original parameters. We use LoRE-Adapters with
7 = 0.5 for the experiments in this work and see similar or better performance when compared to
RE-Adapt while using up to 5x less parameters. Like LoRA, the savings in memory is beneficial in
cases where several LoRE-Adapters are swapped in and out of the same model.

5 Experiments

We quantify the effectiveness of RE-Adapt using question answering (QA), a task for which
instruction-tuned models should perform significantly better than their pretrained counterparts.
Specifically, we want to see if RE-Adapt is better than alternatives for adding knowledge from data
not annotated with question-answer pairs. We would like the resulting model to do well answer-
ing questions about the new domains, while maintaining the level of performance of the original
instruction-tuned model when answering unrelated questions.

5.1 Models

We replicate all experiments using the pretrained and instruct versions from the Gemma-7B (Banks
and Warkentin, [2024), Llama-3-8B (Meta, |2024), and Mistral-7B (Jiang et al., [2023)) family of
LLMs using the HuggingFace API (Wolf et al.,[2020). We utilize the parameter efficient fine-tuning
library (Mangrulkar et al.,2022) for adding DoRA (Liu et al.| 2024)) knowledge adapters to each of
these models. We perform all fine-tuning and inference with a single 80GB A100 GPU. We include

hyper-parameters and other details of our fine-tuning in

In we compare RE-Adapt and LoRE-Adapt with the pretrained and instruct models of each
family, as well as pretrained and instruct models fine-tuned with DoRA on the new domains. We
perform experiments for closed-book QA as well as QA with retrieval-augmented generation (RAG).

5.2 Data

Kotha et al.|(2024)) showed that fine-tuning degrades performance outside of the fine-tuning distribu-
tion. We hypothesize that our approach mitigates this issue by isolating existing instruction-tuning
from additional fine-tuning. We test this by measuring the changes in question-answering perfor-
mance when various fine-tuning strategies are used to update models with unlabeled data. An optimal
approach would benefit from the new knowledge when asked related questions, without losing the
ability to answer unrelated questions.
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Figure 4: RE-Adapt enables the addition of new knowledge to an instruction-tuned model, without
degrading capabilities on knowledge from pretraining.

We explore this hypothesis by fine-tuning models in two different settings. We use English WMT
News Crawl (Kocmi et al.,[2022) articles published in the year 2020 as our first fine-tuning distribu-
tionE] These articles provide non-annotated information which we capture through DoRA adapters
trained for next-token-prediction. We evaluate how well this knowledge is acquired by using the
resulting models to answer related questions from the StreamingQA dataset (Liska et al., [2022),
which contains 21,681 QA pairs derived from our subset of articles

We use the evidence passages from Retrieval QA (Zhang et al 2024) as our second fine-tuning
distribution and measure performance on the corresponding questions from the same datasetﬂ Zhang
et al.| (2024)) curated the dataset by compiling the subset of questions from five other QA benchmarks
for which GPT-4 (OpenAl et al.,|2024)) is unable to answer without access to external knowledge. The
questions were selected with the goal of having the corresponding knowledge absent from current
LLMs, making this dataset especially challenging in the closed-book setting.

To measure any performance degradation from fine-tuning, we also evaluate our models using a short-
answer subset of the Natural Questions dataset (Kwiatkowski et al.| |2019) which is unrelated to either
fine-tuning distributionf_f] We use these questions to measure performance before and after fine-tuning
our models on the other domains. We would like our approach to result in improved performance
when answering questions related to the fine-tuning data without a reduction in performance on the

unrelated Natural Questions

5.3 Evaluation

We observe that instruction-tuned models will generally answer questions in long-form, often repeat-
ing the question and providing additional helpful context. An example of this behavior is shown in
Table I|where the model is asked for the number of episodes in a popular tv series. Here we see the
reference answer is 291, which Llama-3 gets correct, but with a response containing full sentences
and additional information to clarify its position.

Table 1: Example from Natural Questions with a truncated response. Llama-3’s full response includes
more details per country.

Question  how many episodes are there in dragon ball z?

Answer 291

Llama-3  There are a total of 291 episodes in the original Japanese version of
Dragon Ball Z. However, the episode count can vary depending on
the version and the country.

Popular QA metrics such as Rouge-L (Lin} 2004) or exact match would penalize Llama-3 for not
being precise. To alleviate this concern we evaluate using Rouge-L’s recall, which is the percentage

!Available at https://data.statmt.org/news-crawl/README under CCO license.

2Available at|https: //github.com/google-deepmind/streamingqga under CC-BY 4.0 license.

3 Available at|https: //huggingface.co/datasets/zihanz/RetrievalQA under MIT license.

4 Available at https://huggingface.co/datasets/natural_questions|under CC-BY-SA 3.0 license.
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of the longest common sub-sequence of the reference answer found in the model’s response. We
additionally measure a version of exact match which looks for the exact reference answer anywhere
in the response. In both cases, if the reference answer is in the response the score will be 1. If the
answer is partially correct then exact match will be 0, but Rouge-L will provide partial credit.

5.4 Closed-Book QA

In our first experiment we conduct QA evaluation in

a closed-book setting where the models must provide

an answer given nothing but the question. We explore 40
how RE-Adapt behaves in this setting with varying
partial adaptation scaling factors. shows
the QA performance of LLama-3 using a fixed-factor
of 1.0 for the knowledge-adapter with varying scal-
ing factors for the RE-Adapter. We find that partial ———
adaptation with a factor of 0.5 for both the knowl- Exact

edge adapter and instruction adapter provides robust 0 & \

results across models and datasets when using both 0 0.5 1
RE-Adapt and LORE-Adapt. RE- Adapter Strength

Score

|

We use an explained variance threshold 7 = 0.5
for our LoRE-Adapters. The resulting percentage
of original parameters for each model are: Llama-3
(19.2%), Gemma (30.2%), and Mistral (27.1%).

The closed-book performance of all models across

datasets is shown in Both RE-Adapt and LoRE-Adapt outperform the pretrained and
instruction-tuned models on StreamingQA and RetrievalQA, even when those models are fine-tuned
on the corresponding News Crawl or Retrieval QA passages. As expected, the pretrained models
perform worse, although fine-tuning on the unlabeled data does improve the QA ability of both
pretrained and instruct models in the domain used for adaptation. These in-domain results indicate
that our approach is superior for knowledge acquisition. Next we will discuss the impact fine-tuning
has on general QA performance by looking at results on the out of domain Natural Questions dataset.

Figure 5: StreamingQA performance as RE-
Adapter is added to fine-tuned Llama-3 model
with varying strengths.

Table 2: Closed-book QA performance. The QA dataset being evaluated is listed above the dataset
used for fine-tuning DoRA adapters. R-L indicates Rouge-L and EM indicates exact match.

StreamingQA Retrieval QA Natural Questions
News Crawl ~ RQA Passages News Crawl RQA Passages
Model R-L EM R-L EM R-L EM R-L EM
Pretrained 9 0 1 0 10 3 10 3
Pretrained + DoRA 12 3 3 2 10 4 14 7
Llama-3  Instruct 33 19 5 3 46 34 46 34
Instruct + DoRA 38 22 7 4 39 22 37 27
LoRE-Adapt (Ours) 46 26 10 6 51 34 53 35
RE-Adapt (Ours) 46 27 9 6 52 34 54 36
Pretrained 11 2 1 0 10 3 10 3
Pretrained + DoRA 19 4 1 0 7 1 10 2
Gemma  Instruct 20 9 2 1 26 12 26 12
Instruct + DoRA 31 18 5 3 26 12 28 14
LoRE-Adapt (Ours) 31 15 7 4 24 14 30 20
RE-Adapt (Ours) 33 18 6 4 26 17 28 17
Pretrained 17 5 2 0 14 5 14 5
Pretrained + DoRA 22 8 2 1 14 5 15 6
Mistral Instruct 29 16 4 2 33 22 33 22
Instruct + DoRA 36 21 6 5 27 13 33 18
LoRE-Adapt (Ours) 39 24 7 5 39 24 42 28
RE-Adapt (Ours) 37 22 6 4 37 23 41 27



The closed-book results for the Natural Questions dataset on the right side of demonstrate the
issues with fine-tuning instruct models with non-annotated data, resulting in models that perform
worse in their original setting. While fine-tuning on News Crawl or Retrieval QA passages improved
the instruct models on the corresponding QA datasets, the majority of models saw a decrease in perfor-
mance on Natural Questions. RE-Adapt alleviates this problem by using the data from the new domain
to only fine-tune the pretrained model, keeping the instruction-tuning intact. Using our approach,
the resulting models performed significantly better

60 F _ on the fine-tuning distribution without a performance
degradation out-of-domain. In fact, RE-Adapt and
LoRE-Adapt performed better than the original
40 - 8 instruction-tuned models out-of-domain. This im-
provement indicates that instruction-tuning likely de-
grades knowledge from pretraining; an issue our ap-

Score

20 - N proach mitigates through partial adaptation. We con-
mm— Rouge-L firm this suspicion by applying RE-Adapt to Llama-3

= | Ex““ without any additional fine-tuning. This allows us
0 05 1 to produce instruct models with instruction-tuning

strengths ranging from O (the pretrained model) to
1 (the instruct model). We find that we can im-
Figure 6: Natural Questions performance as PTOVe existing_ instruct m.odels with zero additional
the RE-Adapter is added to pretrained Llama- raining by simply scaling down the strength of

3 with varying strengths. instruction-tuning Combined, these re-
sults demonstrate the effectiveness of RE-Adapt for

knowledge acquisition with minimal forgetting.

RE-Adapter Strength

5.5 RE-Adapt with RAG

Retrieval-augmented generation (RAG) Lewis et al.| (2020) is a popular alternative for utilizing new
data with instruction-tuned models. Instead of altering the model directly, RAG maintains a database
of all text and retrieves relevant documents to include in the prompt as context. This begs the question,
is RE-Adapt still beneficial if the new data is already available via RAG?

Table 3: QA performance when using RAG with BM25 and (Oracle) retrievers.

StreamingQA Retrieval QA
Model Rouge-L.  Exact Match  Rouge-L  Exact Match
Pretrained 38 (59) 27 (48) 13 (16) 11 (14)
Llama-3  Instruct 55 (57) 54 (58) 14 (30) 16 (32)
LoRE-Adapt (Ours) 69 (74) 58 (64) 24 (37) 21 (31)
RE-Adapt (Ours) 68 (71) 59 (64) 19 (36) 18 (30)
Pretrained 39 (41) 28 (29) 4 (26) 3(23)
Gemma  Instruct 52 (56) 48 (53) 17 (24) 16 (24)
LoRE-Adapt (Ours) 46 (50) 49 (55) 12 (17) 18 (27)
RE-Adapt (Ours) 50 (55) 50 (56) 21 (30) 18 (28)
Pretrained 33 (38) 26 (30) 18 (12) 16 (10)
Mistral Instruct 49 (52) 50 (56) 14 (23) 19 (28)
LoRE-Adapt (Ours) 54 (58) 55 (61) 18 (23) 20 (28)
RE-Adapt (Ours) 55 (58) 55 (60) 15 (24) 20 (29)

To answer this question, we replicate our experiments on StreamingQA and RetrievalQA, using a
BM-25 index (Robertson and Zaragozal [2009) to retrieve the most relevant passage to be used as
context for the models. In practice, RAG setups can retrieve more than one document, but each
question in our datasets can be answered from a single passage, and therefore we avoid known issues
which RAG can face when too much context is provided to the models (Liu et al.| 2023 Barnett et al.}
2024;|Gao et al., [2024). Because a poor retriever could bias results in our favor, we also repeat the
experiment using an oracle retriever. Instead of performing a heuristic search, the oracle retriever
directly selects the passages capable of answering the question as context. While this idealized



retriever is unrealistic in practice, it allows us to further isolate the benefit of combining RAG with
fine-tuning by eliminating any impact from imperfect retrieval.

The RAG results are shown in Again we see significant improvements when using RE-Adapt
and LoRE-Adapt even in this RAG setting where the model should already have access to the relevant
information needed to answer the questions. The BM-25 search retrieved the correct document with
approximately 73% accuracy across models. Using RE-Adapt to incorporate the data outside of
RAG alleviates the shortcomings of the retriever. However, RE-Adapt also improved results when
using the oracle, suggesting that adding domain knowledge with an adapter also reduces incorrect
interpretations of the context retrieved via RAG.

6 Discussion

Combined, our results demonstrate RE-Adapt’s effectiveness at incorporating new knowledge into
existing LLMs without having to discard previous instruction-tuning. Our methods increase QA
performance by a greater amount when compared to traditional fine-tuning strategies. We also
find that our approach improves RAG based systems, even in the most optimistic case of perfect
retrieval. Our improved results outside of the fine-tuning distribution suggest that we can recover
additional pretraining knowledge by reducing the strength of instruction-tuning through partial
adaptation. Importantly, an improvement is seen without any additional fine-tuning of the underlying
models. These results encourage additional future research into controlling the competing priorities
of knowledge acquisition and general problem solving capability.

Limitations. The limitations of our work are two-fold. First, instruction-tuned models perform
better than pretrained models on a wide variety of tasks, but we limit our evaluations to the single
task of question answering due to the large number of ablations required by our experiments and
limited compute resources available. Second, we include the prompts used for instructing the models
for QA in[Appendix B|but note that different prompting strategies could alter our results. We mitigate
introducing bias in prompting by not optimizing the prompts for any particular method.

Societal Impact. We are unaware of any negative societal impacts likely to be caused by our
contributions. We further amortize the costs of building open-source LLMs by enabling others
to leverage existing instruction-tuning, hopefully decreasing the future energy consumption and
environmental impacts caused by LLM customization.

7 Conclusion

In this work, we presented RE-Adapt, a new approach for adding knowledge to existing instruction-
tuned models. RE-Adapt isolates the differences between an instruction-tuned model and its pretrained
counterpart in order to preserve instruction-following capabilities during additional fine-tuning on
unlabeled data. We demonstrated that our approach outperforms fine-tuning pretrained or instruction-
tuned models directly, which otherwise causes performance to degrade outside of the new fine-tuning
domain. Our findings are robust across three state of the art large language models.

We achieved our best performance using partial adaptation, a new method for controlling the strength
of adaptation at inference time when using single or combined adapters. We found that partially
adapting instruction-tuned models improved QA performance without any additional fine-tuning.

We also analyzed the spectrum of RE-Adapt’s weight matrices, constructing a low-rank variant of our
approach, LoRE-Adapt, which captures the majority of variation in the instruction-tuning weights at
a much lower rank. LoRE-Adapt performed similarly to RE-Adapt with occasional out-performance,
while decreasing the number of parameters by as much as 5x in our experiments.

Finally, we demonstrated that RE-Adapt improves performance even when the information required
to answer questions is available via retrieval augmented generation. Combined, our results suggest
RE-Adapt is an effective approach for infusing new knowledge into already instruction-tuned LLMs.
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We include the settings for training our DoRA adapters in[Table 4] All adapters were trained on a
single NVIDIA A100 GPU with 80GB of memory.

B Prompts Used
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huggingface tokenizers library to ensure our prompts follow the correct template.

The Llama-3 instruct models use a combination of system, user, and assistant roles while Gemma
and Mistral only use user and assistant. Our prompts where constructed using the following formats:

Llama-3 Closed-Book QA
system: Answer the following question.
user: <question>?

Llama-3 RAG
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Table 4: Training details.

Setting Value
LoRA Layers all-linear
LoRA Rank 64
LoRA Alpha 128
LoRA Dropout 0.05
DoRA True
Batch Size 20
Epochs News Crawl 10
Epochs Retrieval QA 3
Optimizer AdamW
Learning Rate 0.0002
Schedule Linear

system: Answer the following question given this context: <context>.
user: <question>?

Gemma and Mistral Closed-Book QA
user: <question>?

Gemma and Mistral RAG
user: Answer the following question given this context: <context>\nQuestion: <question>?
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