
Toucan: Token-Aware Character Level Language Modeling

Anonymous ACL submission

Abstract

Character-level language models obviate the001
need for separately trained tokenizers, but ef-002
ficiency suffers from longer sequence lengths.003
Learning to combine character representations004
into tokens has made training these models005
more efficient, but they still require decoding006
characters individually. We propose Toucan,007
an augmentation to character-level models to008
make them “token-aware”. Comparing our009
method to prior work, we demonstrate signifi-010
cant speed-ups in character generation without011
a loss in language modeling performance. We012
then explore differences between our learned013
dynamic tokenization of character sequences014
with popular fixed vocabulary solutions such as015
Byte-Pair Encoding and WordPiece, finding our016
approach leads to a greater amount of longer017
sequences tokenized as single items. Code and018
data will be released at time of submission.019

1 Introduction020

Most modern language models (LMs) are trained021

using the transformer architecture (Vaswani et al.,022

2017) on a fixed vocabulary of tokens (Brown et al.,023

2020; Devlin et al., 2019; Touvron et al., 2023;024

Penedo et al., 2023). Tokenizers and language mod-025

els are commonly trained using separate objectives.026

For example, Byte-Pair-Encoding (BPE) (Sennrich027

et al., 2016) selects tokens based on their frequency028

and not by their ability to predict the next token in a029

sequence. The fixed vocabulary and misaligned ob-030

jectives suggest that current tokenization schemes031

are potentially suboptimal.032

Training transformers directly on character or033

byte-level sequences removes the need for tokeniza-034

tion, but the increased sequence length suffers from035

the transformer’s quadratic complexity. Several036

variations have been developed to address the is-037

sue by pooling fixed-length contiguous character038

representations into smaller sets of patch represen-039

tations (Dai et al., 2020; Nawrot et al., 2022; Yu040

Figure 1: Token-aware generation does not require re-
processing the entire sequence at each step for every
character. *: special end-of-token character.

et al., 2023; Tay et al., 2022). Although this can 041

improve efficiency, Edman et al. (2022) discuss 042

the limitations of length, position, and morpheme 043

inconsistency when using fixed versus dynamic- 044

width representations. 045

Qin and Van Durme (2023) address these issues, 046

but rely on existing tokenization schemes. They in- 047

troduce a scoring network which selects “nuggets” 048

from a sequence of contextualized vectors, then 049

pool information into those selections via trans- 050

former layers. The selected sequence of nuggets is 051

then used to represent the text moving forward. 052

Similar approaches can be taken with character- 053

based models (Nawrot et al., 2023; Edman et al., 054

2022; Godey et al., 2022). For example, Nawrot 055

et al. (2023) modify Hourglass Transformers 056

(Nawrot et al., 2022) with a boundary predictor 057

network for segmenting characters into dynamic- 058

width tokens. This enables jointly training tokeniza- 059

tion and token-level language modeling end-to-end. 060

While the training of these models is efficient, the 061

decoding of new text requires repeatedly passing 062

the entire sequence through the model for every 063

new character generated. This contrasts with token- 064

level transformers which produce an entire token 065

worth of characters before the sequence is repro- 066

cessed by the model. 067

We therefore propose a variant of the Hourglass 068

Transformer with dynamic pooling augmented to 069

1



Figure 2: The architecture for Toucan, the token-aware Hourglass Transformer. End-of-token (EOT) vectors and
labels (*) are inserted into the character sequences so that the decoder learns token boundaries during training. As
per the original model, learned NULL vectors are used to predict the characters in the first token.

become “token-aware” in the decoding step. This070

approach, which we refer to as Toucan, enables071

decoding entire tokens using a fraction of the com-072

pute, without a loss in LM performance. An illus-073

tration of the difference is shown in Figure 1.074

The contributions of this paper are as follows:075

• A technique for modifying character-level lan-076

guage models for more efficient decoding.077

• An application of our approach to Nawrot et al.078

(2023)’s Hourglass Transformer, resulting in079

over 2x faster character decoding.080

• A comparison of popular tokenizers with081

those learned end-to-end with our models.082

2 Background083

2.1 The Hourglass Transformer084

Nawrot et al. (2022) designed the Hourglass Trans-085

former to address challenges modeling long se-086

quences. Specifically, they introduce contiguous087

fixed-width pooling at various stages of a typical088

transformer to shorten the effective length of the se-089

quence being processed. They then up-sample back090

to the original length with a residual connection091

from the pre-pooled representation.092

2.2 Dynamic Token Pooling093

Nawrot et al. (2023) modified the Hourglass Trans-094

former to perform dynamic-width pooling of char-095

acter sequences. The pooled characters’ representa-096

tion is then processed as a token representation as in097

traditional transformers. Like Qin and Van Durme098

(2023), the segmentation of these tokens is selected099

by a separate feed-forward network. While Nawrot100

et al. (2023) developed several strategies for train-101

ing this boundary predictor, our work focuses on102

their use of the gumbel-sigmoid, which allows end- 103

to-end unsupervised learning of tokenization at a 104

compression rate controlled with a user-defined 105

prior. In keeping with their work, we refer to the 106

achieved compression rate as the shortening factor 107

(SF). Our main contribution is augmenting their 108

architecture to significantly improve its decoding 109

efficiency. 110

2.3 Tokenizers 111

We later compare the tokenization learned by our 112

model with two popular alternatives: Byte-Pair- 113

Encoding (BPE) (Sennrich et al., 2016) and Word- 114

Piece (Schuster and Nakajima, 2012). 115

BPE first considers the unique words in a dataset. 116

A set of learned tokens is initialized with the unique 117

characters found among the words. The set is 118

then iteratively expanded to a user-defined size by 119

adding the most frequent combination of an exist- 120

ing token with an additional character. 121

WordPiece (Schuster and Nakajima, 2012) is a 122

similar tokenization algorithm popularized by its 123

use in training BERT (Devlin et al., 2019). It differs 124

from BPE in that characters that begin a token are 125

treated as separate symbols than their counterparts 126

internal to a token. Instead of frequency, the ex- 127

pansion of the token set is done based on a scoring 128

function that prefers merging tokens that appear 129

more frequently together than they do apart. 130

3 Token-Aware Decoding 131

The Toucan architecture is shown in Figure 2. The 132

three components of the architecture are derived 133

from Nawrot et al. (2023) but include changes for 134

improving decoding efficiency. We label the three 135

components of the architecture as the tokenizer, 136

the token model, and the character decoder. First, 137

2



the tokenizer contextualizes character embeddings138

and segments the characters into tokens using the139

boundary predictor. Character representations are140

pooled to form each token representation. To en-141

sure the model is auto-regressive, the sequence of142

token vectors are offset using learned null vectors143

(Nawrot et al., 2023). The token model processes144

the sequence of token vectors with typical trans-145

former layers. The outputs of the token model146

are token-contextualized vectors which will be up-147

sampled and used by the character decoder to pre-148

dict the characters of the next token.149

Decoding a single character xt from Nawrot et al.150

(2023)’s original model requires passing the entire151

sequence x1:t−1 through all three model compo-152

nents, regardless of how the preceding characters153

had been segmented. We leverage the fact that154

characters segmented into the same token share155

the same contextualized representation after up-156

sampling. This representation is reused to predict157

each character in the next token and therefore pro-158

vides an opportunity to reduce computations.159

To increase decoding speed, we would like the160

decoder to generate all characters in a token with-161

out repeatedly reprocessing the entire sequence162

with the tokenizer and token model. To this end,163

we inject a learned end-of-token vector after each164

token in the up-sampled sequence. The labels for165

training the decoder are adjusted so that the last166

character of each token predicts an end-of-token167

symbol, and the injected end-of-token vector pre-168

dicts the first character in the next token. We further169

remove the decoder’s dependence on the tokenizer170

by moving the residual connection from the tok-171

enizer to the embedding layer as in Yu et al. (2023).172

A trained Toucan model should be able to gener-173

ate an entire token using only the embedding layer174

and character decoder by sampling new characters175

from the decoder until the end-of-token symbol is176

predicted. The generated token is then appended to177

the sequence and processed by the entire model to178

begin the generation of the next token.179

4 Experimental Setup180

4.1 Baseline and Evaluation181

We use the architecture from Nawrot et al. (2023) as182

our baseline model and replicate their experiments183

on the text8 (Mahoney, 2006) and English wiki40b184

(Guo et al., 2020) datasets.1 We follow their ex-185

1Data was gathered and preprocessed using their project
repository: https://github.com/PiotrNawrot/dynamic-pooling/

0 500 1,000

0

100

200

Se
co

nd
s

baseline
toucan

Figure 3: Token generation speed as we increase the
number of tokens. Both models trained using a (2,8,2)
layer configuration and binomial prior of 0.2.

act training and evaluation procedures, model size, 186

and hyper-parameters for both the baseline and our 187

models. To evaluate decoding speed, we report 188

wall-clock time while decoding characters on a 189

single NVIDIA Quadro RTX-6000. 190

4.2 Comparing Tokenizers 191

We compare the tokenization learned by our model 192

with two popular alternatives. First, we compute 193

the number of unique tokens in our training set as 194

reported by our learned tokenizer. We then train 195

BPE and WordPiece models using our unique to- 196

ken count as the vocabulary size.2 We tokenize our 197

training data with all models and provide tokeniza- 198

tion statistics and examples in Section 5.3. 199

5 Results 200

5.1 Decoding Speed 201

As per Nawrot et al. (2023), we trained all models 202

with a (2-8-2) layer configuration for the tokenizer, 203

token model, and character decoder respectively. 204

Toucan only uses the decoder for token completion, 205

while the baseline model requires all layers for 206

each character. The improvement in generation 207

speed while generating an increasing number of 208

tokens is shown in Figure 3. As expected, Toucan 209

is significantly faster as it is using only the last 210

two layers to produce all but the first character per 211

token instead of the entire twelve layers required 212

by the baseline. We verify our modifications have 213

little impact on modeling performance and include 214

language modeling metrics in Appendix A. 215

2Byte-pair-encoding and WordPiece Tokenizers are
trained using the Huggingface TOKENIZERS package:
https://huggingface.co/docs/tokenizers/index.

3



0 5 10 15 20

0

2

4

·106

C
ou

nt
toucan (x4.9)
toucan (x10.2)

BPE/WP

Figure 4: Distribution of token lengths per tokenization
algorithm. The plot is cut-off at token length 20, but all
algorithms have thin tails extending out past this value.

5.2 Speed Performance Tradeoff216

By reducing the binomial prior, the tokenizer is en-217

couraged to increase its compression rate of charac-218

ters. The trade off between language modeling per-219

formance, shortening factor, and generation speed220

is shown in Table 1. The model generates char-221

acters faster with an increased shortening factor,222

but the language model performance suffers as a re-223

sult. The models trained at the highest compression224

rate performed poorly; we omit them from further225

comparisons.226

Binomial Prior BPC SF Gen@1000
0.05 1.652 (x24.4) 1.7s
0.1 1.127 (x10.2) 3.9s
0.2 0.997 (x4.9) 6.1s

Table 1: Bits-per-char, shortening factor, and time to
generate 1k characters for varying binomial priors.

5.3 Tokenization227

The distribution of token lengths for each model228

are shown in Figure 4. The Toucan models tend to229

segment sequences into tokens with lengths close230

to their shortening factor. We plot a single distribu-231

tion for BPE and WordPiece which appear nearly232

identical across all versions. The achieved compres-233

sion rates for BPE and WordPiece were x5.8 with234

the smaller vocabulary and x5.9 for the larger. Be-235

cause the algorithms pre-tokenize on white space,236

the larger vocabulary captured all unique words in237

the training set. We include plots for the individual238

models in Appendix B.239

We show the top-10 most frequent tokens per240

model in Table 2. We observe that the Toucan241

(x4.9) model has similar top tokens as BPE and242

WordPiece but prefers segmenting suffixes more243

frequently than the other models. Toucan (x10.2)’s244

BPE WP Toucan (x4.9) Toucan (x10.2)
the the _the _that
of of _of _with

and and _and _from
one one _one _it
in in _in _which
a a ing _were
to to _a _but

zero zero _to _also
nine nine ion _eight
two two _zero _seven

Table 2: Top ten tokens per model. Top tokens for
BPE/WP remained the same for increased vocabulary.
’_’: space character for the Toucan models.

top tokens are disjoint from the other models as it 245

tends to use those words in longer token phrases. 246

Further comparison in Appendix B. 247

The Toucan models tend to tokenize based on 248

spaces, suffixes, word roots, and short phrases 249

when using the higher shortening factor. Unlike 250

BPE and WordPiece, the learned tokenizers can 251

also identify tokens not seen in the training data. 252

In Table 3 we show the tokenization of an example 253

phrase from the test set which includes the unseen 254

word armalite. Further examples in Appendix C. 255

Model Tokenization
Toucan (x4.9) ac:qu:is:it:ion: of: the: rifle: from: armal:ite

Toucan (x10.2) acquisition: of the rifle: from: armalite
BPE acquisition:of:the:rifle:from:armal:ite
WP acquisition:of:the:rifle:from:arma:##lite

Table 3: Example tokenization from first entry in the
test set. ## : WP marker for a token internal to words.

6 Conclusion 256

We proposed Toucan, a method for augmenting 257

character-level models to generate learned tokens 258

using a fraction of the compute compared to exist- 259

ing approaches. We applied Toucan to the Hour- 260

glass Transformer with dynamic token pooling and 261

demonstrated significant speed ups in character 262

generation without a loss in language modeling 263

performance. We explored the differences between 264

our learned tokenization and popular alternatives 265

such as Byte-Pair-Encoding (BPE) and WordPiece. 266

Our end-to-end tokenizers learn natural tokeniza- 267

tion boundaries such as spaces, suffixes, word roots, 268

and short phrases completely unsupervised. In con- 269

trast to Byte-Pair-Encoding and WordPiece, our 270

tokenizers are capable of segmenting complete to- 271

kens unseen in the training data. 272

4



7 Limitations273

We have identified three limitations to our work.274

First, while our approach is language independent,275

we only evaluate results on English datasets. There276

are potentially other benefits to this approach in a277

multilingual setting which should be explored in278

future work.279

Second, we use the architecture of Nawrot et al.280

(2023) as our only baseline. Our approach can281

be applied to many character-level models which282

dynamically pool representations. A broader range283

of experiments could be extended to architectures284

used in works such as Edman et al. (2022) or Godey285

et al. (2022).286

Lastly, we do not compare the generation speed287

of our models with traditional token-based ap-288

proaches. Our main contribution is improving289

the efficiency of character-level models, but future290

analysis comparing performance and efficiency to291

token-based approaches is warranted.292

8 Ethics Statement293

We are unaware of any negative impact this work294

inherently introduces. However, the improved ef-295

ficiency of our approach has the potential to exac-296

erbate any existing risk from the use of character-297

level language models by malicious actors.298

References299

Tom Brown, Benjamin Mann, Nick Ryder, Melanie300
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind301
Neelakantan, Pranav Shyam, Girish Sastry, Amanda302
Askell, Sandhini Agarwal, Ariel Herbert-Voss,303
Gretchen Krueger, Tom Henighan, Rewon Child,304
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens305
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-306
teusz Litwin, Scott Gray, Benjamin Chess, Jack307
Clark, Christopher Berner, Sam McCandlish, Alec308
Radford, Ilya Sutskever, and Dario Amodei. 2020.309
Language models are few-shot learners. In Ad-310
vances in Neural Information Processing Systems,311
volume 33, pages 1877–1901. Curran Associates,312
Inc.313

Zihang Dai, Guokun Lai, Yiming Yang, and Quoc V. Le.314
2020. Funnel-transformer: Filtering out sequential315
redundancy for efficient language processing. In316
Proceedings of the 34th International Conference on317
Neural Information Processing Systems, NIPS’20,318
Red Hook, NY, USA. Curran Associates Inc.319

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and320
Kristina Toutanova. 2019. BERT: Pre-training of321
deep bidirectional transformers for language under-322
standing. In Proceedings of the 2019 Conference of323

the North American Chapter of the Association for 324
Computational Linguistics: Human Language Tech- 325
nologies, Volume 1 (Long and Short Papers), pages 326
4171–4186, Minneapolis, Minnesota. Association for 327
Computational Linguistics. 328

Lukas Edman, Antonio Toral, and Gertjan van Noord. 329
2022. Subword-delimited downsampling for better 330
character-level translation. In Findings of the Associ- 331
ation for Computational Linguistics: EMNLP 2022, 332
pages 981–992, Abu Dhabi, United Arab Emirates. 333
Association for Computational Linguistics. 334

Nathan Godey, Roman Castagné, Éric de la Clergerie, 335
and Benoît Sagot. 2022. MANTa: Efficient gradient- 336
based tokenization for end-to-end robust language 337
modeling. In Findings of the Association for Com- 338
putational Linguistics: EMNLP 2022, pages 2859– 339
2870, Abu Dhabi, United Arab Emirates. Association 340
for Computational Linguistics. 341

Mandy Guo, Zihang Dai, Denny Vrandečić, and Rami 342
Al-Rfou. 2020. Wiki-40B: Multilingual language 343
model dataset. In Proceedings of the Twelfth Lan- 344
guage Resources and Evaluation Conference, pages 345
2440–2452, Marseille, France. European Language 346
Resources Association. 347

Matt Mahoney. 2006. Large text compression bench- 348
mark. 349

Piotr Nawrot, Jan Chorowski, Adrian Lancucki, and 350
Edoardo Maria Ponti. 2023. Efficient transformers 351
with dynamic token pooling. In Proceedings of the 352
61st Annual Meeting of the Association for Compu- 353
tational Linguistics (Volume 1: Long Papers), pages 354
6403–6417, Toronto, Canada. Association for Com- 355
putational Linguistics. 356

Piotr Nawrot, Szymon Tworkowski, Michał Tyrolski, 357
Lukasz Kaiser, Yuhuai Wu, Christian Szegedy, and 358
Henryk Michalewski. 2022. Hierarchical transform- 359
ers are more efficient language models. In Find- 360
ings of the Association for Computational Linguis- 361
tics: NAACL 2022, pages 1559–1571, Seattle, United 362
States. Association for Computational Linguistics. 363

Guilherme Penedo, Quentin Malartic, Daniel Hesslow, 364
Ruxandra Cojocaru, Alessandro Cappelli, Hamza 365
Alobeidli, Baptiste Pannier, Ebtesam Almazrouei, 366
and Julien Launay. 2023. The refinedweb dataset for 367
falcon llm: Outperforming curated corpora with web 368
data, and web data only. 369

Guanghui Qin and Benjamin Van Durme. 2023. Nugget: 370
Neural agglomerative embeddings of text. In Pro- 371
ceedings of the 40th International Conference on 372
Machine Learning, ICML’23. JMLR.org. 373

Mike Schuster and Kaisuke Nakajima. 2012. Japanese 374
and korean voice search. In 2012 IEEE International 375
Conference on Acoustics, Speech and Signal Process- 376
ing (ICASSP), pages 5149–5152. 377

5

https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2022.findings-emnlp.69
https://doi.org/10.18653/v1/2022.findings-emnlp.69
https://doi.org/10.18653/v1/2022.findings-emnlp.69
https://doi.org/10.18653/v1/2022.findings-emnlp.207
https://doi.org/10.18653/v1/2022.findings-emnlp.207
https://doi.org/10.18653/v1/2022.findings-emnlp.207
https://doi.org/10.18653/v1/2022.findings-emnlp.207
https://doi.org/10.18653/v1/2022.findings-emnlp.207
https://aclanthology.org/2020.lrec-1.297
https://aclanthology.org/2020.lrec-1.297
https://aclanthology.org/2020.lrec-1.297
http://www.mattmahoney.net/dc/text
http://www.mattmahoney.net/dc/text
http://www.mattmahoney.net/dc/text
https://doi.org/10.18653/v1/2023.acl-long.353
https://doi.org/10.18653/v1/2023.acl-long.353
https://doi.org/10.18653/v1/2023.acl-long.353
https://doi.org/10.18653/v1/2022.findings-naacl.117
https://doi.org/10.18653/v1/2022.findings-naacl.117
https://doi.org/10.18653/v1/2022.findings-naacl.117
http://arxiv.org/abs/2306.01116
http://arxiv.org/abs/2306.01116
http://arxiv.org/abs/2306.01116
http://arxiv.org/abs/2306.01116
http://arxiv.org/abs/2306.01116
https://doi.org/10.1109/ICASSP.2012.6289079
https://doi.org/10.1109/ICASSP.2012.6289079
https://doi.org/10.1109/ICASSP.2012.6289079


Rico Sennrich, Barry Haddow, and Alexandra Birch.378
2016. Neural machine translation of rare words with379
subword units. In Proceedings of the 54th Annual380
Meeting of the Association for Computational Lin-381
guistics (Volume 1: Long Papers), pages 1715–1725,382
Berlin, Germany. Association for Computational Lin-383
guistics.384

Yi Tay, Vinh Q. Tran, Sebastian Ruder, Jai Gupta,385
Hyung Won Chung, Dara Bahri, Zhen Qin, Simon386
Baumgartner, Cong Yu, and Donald Metzler. 2022.387
Charformer: Fast character transformers via gradient-388
based subword tokenization.389

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier390
Martinet, Marie-Anne Lachaux, Timothée Lacroix,391
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal392
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard393
Grave, and Guillaume Lample. 2023. Llama: Open394
and efficient foundation language models.395

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob396
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz397
Kaiser, and Illia Polosukhin. 2017. Attention is all398
you need. In Advances in Neural Information Pro-399
cessing Systems, volume 30. Curran Associates, Inc.400

Lili Yu, Dániel Simig, Colin Flaherty, Armen Agha-401
janyan, Luke Zettlemoyer, and Mike Lewis. 2023.402
Megabyte: Predicting million-byte sequences with403
multiscale transformers.404

6

https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
http://arxiv.org/abs/2106.12672
http://arxiv.org/abs/2106.12672
http://arxiv.org/abs/2106.12672
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2302.13971
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
http://arxiv.org/abs/2305.07185
http://arxiv.org/abs/2305.07185
http://arxiv.org/abs/2305.07185


A Language Modeling Performance405

text8 wiki40b

BPC BPT SF BPC BPT SF

baseline 1.195 5.840 (x4.9) 1.115 5.533 (x5.0)
toucan 0.997 5.911 (x4.9) 0.957 5.699 (x5.0)

Table 4: Language model performance for the baseline
and our Toucan model. Both versions were trained
with a binomial prior of 0.2 encouraging a roughly (x5)
shortening factor.

Our changes to the Hourglass Transformer were406

designed to improve decoding efficiency with mini-407

mal impact to language modeling performance. Be-408

cause the Toucan model has an additional character409

in its vocabulary, the bits-per-character comparison410

is biased in our favor. Therefore, we also report411

bits-per-token (BPT). For an average token length412

w̄ we compute bits-per-token (BPT) as413

bpt = bpc ∗ w̄. (1)414

This metric favors the baseline, because the same415

tokenization with Toucan will include additional416

bits for the end-of-token character. We show per-417

formance metrics between the baseline and our418

architecture in Table 4 and conclude that our modi-419

fications have little impact on performance.420

B Tokenization Statistics421

We plot the distribution of tokens by length for each422

tokenization algorithm in Figures 5 and 6.423

Table 2 highlighted a difference in top tokens for424

the Toucan (x10.2) model versus BPE and Word-425

Piece. We report the first occurrence of their top426

tokens for Toucan (x10.2) in Table 5. The Toucan427

model tokenized these common words into short428

phrases seen frequently in the dataset.429

C Tokenization Examples430

We provide several example tokenizations from our431

test data in Tables 6, 7, 8, and 9. We observe similar432

tokenizations from BPE and WordPiece while the433

Toucan (x4.9) model breaks up longer words more434

frequently. The Toucan (10.2) model tends to group435

whole words and short phrases as tokens.436

Word First Occurrence Index
the the first 60
of of these 175

and and other 135
one one eight 18
in in one eight 107
a a number 422
to to make 351

zero two zero zero five 124
nine one nine eight 39
two two zero zero five 124

Table 5: First occurrence of top BPE/WP tokens in the
Toucan (x10.2)’s top tokens.

Toucan (x4.9)
his: career: desp:ite: announc:ing: plans: to: ret:ire

eleven: straight: commerc:ial: disappointments
they: are: temperature: pres:sure: water: vapor

writes: on: the: mod:if:icat:ion: of: clouds
includes: eukaryotes: with: a: nucleus: such: as: fung:i

capac:ity: of: hard: drives: was: measured: in: megabytes
accused: of: irregular:it:ies: in: invest:igat:ing

geolog:ists: to: refer: to: an: extraterrestr:ial: mesa
in: engl:ish: poetry: feet: are: determ:ined: by: emphas:is
mistakes: could: be: corrected: by: apply:ing: correct:ion

pol:ish: parl:iament: in: september: one: nine: nine: seven
nasal: lateral:ity: is: the: release: of: airflow

a: motherboard: also: known: as: a: mainboard: log:ic: board
tombs: insp:ire: the: ant:i: arch:itectural

salt: cellar: of: gold: and: ebony: in: one: five: four: zero

is: called: a: capac:it:ive: manometer: vacuum: gauge
a: relat:ively: late: development: reconstruct:ion

microwaves: at: a: frequency: of: two: four: gigahertz
antony: octav:ian: became: uncontested: ruler: of: rome

morphogenes:is: from: the: greek: morph: shape: and: genes:is

Table 6: Tokenization of phrases from the test data using
Toucan (x4.9).

7



Toucan (x10.2)
his career: despite: announcing: plans: to retire
eleven: straight: commercial: disappointments
they: are temperature: pressure: water: vapor

writes: on the modification: of clouds
includes: eukaryotes: with: a nucleus: such: as fungi

capacity: of hard: drives: was measured: in megabytes
accused: of irregularities: in investigating

geologists: to refer: to an extraterrestrial: mesa
in english: poetry: feet: are determined: by emphasis

mistakes: could: be corrected: by applying: correction

polish: parliament: in september: one nine nine seven
nasal: laterality: is the release: of airflow

a motherboard: also: known: as a mainboard: logic: board
tombs: inspire: the anti: architectural

salt: cellar: of gold: and ebony: in one five four zero

is called: a capacitive: manometer: vacuum: gauge
a relatively: late: development: reconstruction

microwaves: at a frequency: of two four gigahertz
antony: octavian: became: uncontested: ruler: of rome

morphogenesis: from: the greek: morph: shape: and genesis

Table 7: Tokenization of phrases from the test data using
Toucan (x10.2).

Byte-Pair-Encoding
his:career:despite:announcing:plans:to:retire
eleven:straight:commercial:disappointments
they:are:temperature:pressure:water:vapor

writes:on:the:modification:of:clouds
includes:eukaryotes:with:a:nucleus:such:as:fungi

capacity:of:hard:drives:was:measured:in:megabytes
accused:of:irregularities:in:investigating

geologists:to:refer:to:an:extraterrestrial:mesa
in:english:poetry:feet:are:determined:by:emphasis
mistakes:could:be:corrected:by:applying:correction

polish:parliament:in:september:one:nine:nine:seven
nasal:later:ality:is:the:release:of:airflow

a:motherboard:also:known:as:a:mainboard:logic:board
tombs:inspire:the:anti:architectural

salt:cellar:of:gold:and:ebony:in:one:five:four:zero

is:called:a:capacitive:man:ometer:vacuum:gauge
a:relatively:late:development:reconstruction

microwaves:at:a:frequency:of:two:four:gigahertz
antony:octavian:became:uncontested:ruler:of:rome

morphogenesis:from:the:greek:morph:shape:and:genesis

Table 8: Tokenization of phrases from the test data using
Byte-Pair-Encoding.

WordPiece
his:career:despite:announcing:plans:to:retire
eleven:straight:commercial:disappointments
they:are:temperature:pressure:water:vapor

writes:on:the:modification:of:clouds
includes:eukaryotes:with:a:nucleus:such:as:fungi

capacity:of:hard:drives:was:measured:in:megabytes
accused:of:irregularities:in:investigating

geologists:to:refer:to:an:extraterrestrial:mesa
in:english:poetry:feet:are:determined:by:emphasis
mistakes:could:be:corrected:by:applying:correction

polish:parliament:in:september:one:nine:nine:seven
nasal:lateral:##ity:is:the:release:of:airflow

a:motherboard:also:known:as:a:mainboard:logic:board
tombs:inspire:the:anti:architectural

salt:cellar:of:gold:and:ebony:in:one:five:four:zero

is:called:a:capacitive:mano:##meter:vacuum:gauge
a:relatively:late:development:reconstruction

microwaves:at:a:frequency:of:two:four:gigahertz
antony:octavian:became:uncontested:ruler:of:rome

morphogenesis:from:the:greek:morph:shape:and:genesis

Table 9: Tokenization of phrases from the test data using
WordPiece.

8



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0

1

2

3

4

·106

Token Length

C
ou

nt

toucan (x4.9)
BPE
WP

Figure 5: Distribution of token lengths per tokenization algorithm. BPE and WP tokenizers were trained with a
vocabulary size of 192,293. The plot is cut-off at token-length 15, but all algorithms have thin tails extending out
past this value.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0

0.5

1

1.5

2

2.5

3

·106

Token Length

C
ou

nt

toucan (x10.2)
BPE
WP

Figure 6: Distribution of token lengths per tokenization algorithm. BPE and WP tokenizers were trained with a
vocabulary size of 1,011,543. The plot is cut-off at token-length 20, but all algorithms have thin tails extending out
past this value.

9


	Introduction
	Background
	The Hourglass Transformer
	Dynamic Token Pooling
	Tokenizers

	Token-Aware Decoding
	Experimental Setup
	Baseline and Evaluation
	Comparing Tokenizers

	Results
	Decoding Speed
	Speed Performance Tradeoff
	Tokenization

	Conclusion
	Limitations
	Ethics Statement
	Language Modeling Performance
	Tokenization Statistics
	Tokenization Examples

